Abstract

The dissipative particle dynamics (DPD) mesoscopic method is used to investigate the self-assembly of rhamnolipid congeners and their aggregation behaviors with paraffins including nonane and pentadecane. The coarse-grained force field is parameterized by combining molecular dynamics (MD) simulations, COSMOtherm calculations, and available experimental data. This model reproduces the vesicular formation of α-l-rhamnopyranosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-C10-C10) reported by all-atom MD simulations. The vesicle composed of Rha-C10-C10 is found to be most stable at a surfactant concentration of 100-146 mM based on asphericity analysis. The architecture of rhamnolipid congeners affects the morphology of their aggregates. Di-rhamno-di-lipidic dRha-C16-C16 forms vesicles with a thicker unilamellar layer of 3.2 nm. Rha-C16-C16 forms vesicles at a lower concentration of 70 mM, but the enclosed water space collapses when the surfactant concentration increases. dRha-C10-C10 forms wormlike micelles, which agglomerate into a torus and interconnected network at higher concentrations. In the presence of alkane molecules, dRha-C10-C10 maintains its wormlike micellar morphology with alkane molecules wrapped inside the aggregates. For Rha-C10-C10, Rha-C16-C16, and dRha-C16-C16, nonane molecules are distributed in the hydrophobic subdomain formed by rhamnolipid molecules. Spherical vesicles are formed at a surfactant concentration of 50 mM and then develop into ellipsoidal vesicles when the concentration increases to 125 mM. When mixed with pentadecane, the alkane molecules are aggregated and surrounded by surfactants forming a core-shell structure at a low surfactant concentration of 20 mM. At higher alkane and surfactant concentrations, the morphologies develop into disk micelles, wormlike micelles, and vesicles, with pentadecane molecules being distributed and packed with rhamnolipids. The obtained simulation results suggest that these biosurfactants have potential as environmental remediation agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.