Abstract
Previous work indicated that diacylglycerol (DG) molecules translocate across the cytoplasm of mammalian cells, a process relevant to the signalling role of this lipid as protein kinase C activator. Here we investigated the possible mechanism underlying DG translocation. We examined the interaction between 1,2-di-[1-14C]oleoyl-sn-glycerol and rat liver cytosol (rlc) using assays based on Lipidex-1000 and on coelution on Sepharose CL 6B. We measured high DG binding activity and found that it resides in cytosolic proteins and not in cytosolic lipids. Chromatography of rlc proteins on Sepharose CL 6B showed profiles in which the activity measured by either method coincided. Further, we showed that the DG-rlc protein interaction results in the stabilization of DG in a micellar form, eluting in the void volume of Sepharose CL 6B. Such stabilized micelles are reminiscent of insect lipophorins and may represent a new, thus far unrecognized, mode of lipid transport within living cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.