Abstract

HypothesisControl of the nanostructure of self-assembled systems may be achieved through manipulation of surfactant molecular packing and interfacial curvature. In order to phase engineer the inverse micellar cubosomes in some monoolein-fatty acid systems, lipids with wedge shaped molecular geometry were incorporated to promote the formation of this phase, that is of interest as potential sustained released nanocarriers. ExperimentsLiquid crystalline nanoparticle dispersions of monoolein with some cis unsaturated fatty acids were prepared and their partial temperature-composition phase diagrams and structure were established using high throughput Small Angle X-ray Scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). The pH responsiveness of these systems was evaluated in the presence of phosphate buffered saline (PBS). FindingsThe partial temperature-composition phase diagrams of five nanoparticle formulations containing monoolein and unsaturated fatty acids were established and identified the presence of micellar cubosomes in each of these systems. The results indicate that temperature, fatty acid concentration and structure, as well as pH all directly impact the formation and stability of this phase. Low energy inverse micellar cubic to emulsion phase transformations were identified in the monoolein with oleic acid and vaccenic acid systems at physiological temperatures that may be advantageous for staged therapeutic release strategies in nanomedicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.