Abstract

Aqueous solutions of bile salts, i.e. sodium cholate (NaC), sodium deoxycholate (NaDC), and sodium taurocholate (NaTC), are characterized and evaluated as reversed-phase liquid chromatographic (RPLC) mobile phases. The separation of the ASTM-recommended RPLC test mix in addition to more than 50 other compounds on a C18 column demonstrates the viability of these bile salts as HPLC mobile phases. The Armstrong-Nome theory was applied and found to adequately describe the partitioning behavior of solutes eluted with these bile salts at low surfactant concentrations. The effect of alcohol additives on chromatographic retention and efficiency was also assessed. Not only are the bile salt molecules rigid and chiral, but they form helical micellar aggregates as well. Consequently, many isomeric compounds can be easily resolved with this mobile phase additive. The base-line resolution of some binaphthyl-type enantiomers with a standard C18 column and the bile salt micellar mobile phases is also demonstrated. In addition, these bile salt mobile phases may be preferable to conventional hydroorganic mobile phase systems for the separation of many classes of routine compounds. A brief prospectus on the future utilization of bile salts in liquid chromatography is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.