Abstract
Intra-specific variation in both the basal metabolic rate (BMR) and mitochondrial efficiency (the amount of ATP produced per unit of oxygen consumed) has profound evolutionary and ecological consequences. However, the functional mechanisms responsible for this variation are not fully understood. Mitochondrial efficiency is negatively correlated with BMR at the interspecific level but it is positively correlated with performance capacity at the intra-specific level. This discrepancy is surprising, as theories explaining the evolution of endothermy assume a positive correlation between BMR and performance capacity. Here, we quantified mitochondrial oxidative phosphorylation activity and efficiency in two lines of laboratory mice divergently selected for either high (H-BMR) or low (L-BMR) levels of BMR. H-BMR mice had larger livers and kidneys (organs that are important predictors of BMR). H-BMR mice also showed higher oxidative phosphorylation activity in liver mitochondria but this difference can be hypothesized to be a direct effect of selection only if the heritability of this trait is low. However, mitochondrial efficiency in all studied organs did not differ between the two lines. We conclude that the rapid evolution of BMR can reflect changes in organ size rather than mitochondrial properties, and does not need to be accompanied obligatorily by changes in mitochondrial efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.