Abstract

Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8days of baseline, 6days of wheel access, and 2days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.