Abstract

Chromatin configuration serves as a principal indicator of GV (germinal vesicle)-stage oocyte quality. However, the underlying mechanisms governing the chromatin configuration transition from NSN (non-surrounded nucleolus) to SN (surrounded nucleolus) remain unclear. In this study, by conducting a quantitative proteomic analysis, we identified an increased expression of the MIB2 (MIB E3 ubiquitin protein ligase 2) protein in SN oocytes. Specific depletion of MIB2 in SN oocytes not only leads to severe disruption of the meiotic apparatus and a higher incidence of aneuploidy but also adversely affects meiotic maturation and early embryo development. Notably, overexpression of MIB2 in NSN oocytes facilitates the chromatin configuration transition. Meantime, we observed that forced expression of MIB2 in NSN oocytes significantly mitigates spindle/chromosome disorganization and aneuploidy. In summary, our results suggest that chromatin configuration transition regulated by MIB2 is crucial for oocytes to acquire developmental competence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.