Abstract
Reported classifications of germinal vesicle (GV) chromatin configurations in pig oocytes were not done by uniform standards and they were not well correlated with oocyte competence. In this study, GV chromatin of pig oocytes was classified into nonsurrounded nucleolus (NSN), surrounded nucleolus (SN), partly NSN (pNSN) and SN (pSN), prematurely condensed NSN (cNSN), pNSN (cpNSN) and pSN (cpSN), and early diakinesis (ED) patterns. During in vitro maturation in 199 medium, NSN oocytes from 1 to 2 mm follicles went consecutively through pNSN, pSN, cpSN, and ED before undergoing GV breakdown, and chromatin in some SN oocytes from 3 to 6 mm follicles re-decondensed into a re-decondensation (RDC) configuration. Under unfavorable conditions such as follicle atresia, ovary handling or maturation in simple MEM medium, however, premature chromatin condensation occurred, forming cNSN, cpNSN, and cpSN patterns. While all NSN and pNSN and some pSN and RDC oocytes actively transcribed, no cNSN, cpNSN, or cpSN oocytes showed transcription. Maturation and embryo culture suggested that SN and pSN oocytes were more competent than NSN and pNSN oocytes; cpSN oocytes were more competent than cNSN/cpNSN oocytes; and only RDC oocytes could develop into blastocysts. It is concluded that the newly classified chromatin configurations are more closely correlated with oocyte competence than those reported previously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.