Abstract

Myocardial Infarction (MI) refers to damage to the heart tissue caused by an inadequate blood supply to the heart muscle due to a sudden blockage in the coronary arteries. This blockage is often a result of the accumulation of fat (cholesterol) forming plaques (atherosclerosis) in the arteries. Over time, these plaques can crack, leading to the formation of a clot (thrombus), which can block the artery and cause a heart attack. Risk factors for a heart attack include smoking, hypertension, diabetes, high cholesterol, metabolic syndrome, and genetic predisposition. Early diagnosis of MI is crucial. Thus, detecting and classifying MI is essential. This paper introduces a new hybrid approach for MI Classification using Spectrogram and Bayesian Optimization (MI-CSBO) for Electrocardiogram (ECG). First, ECG signals from the PTB Database (PTBDB) were converted from the time domain to the frequency domain using the spectrogram method. Then, a deep residual CNN was applied to the test and train datasets of ECG imaging data. The ECG dataset trained using the Deep Residual model was then acquired. Finally, the Bayesian approach, NCA feature selection, and various machine learning algorithms (k-NN, SVM, Tree, Bagged, Naïve Bayes, Ensemble) were used to derive performance measures. The MI-CSBO method achieved a 100% correct diagnosis rate, as detailed in the Experimental Results section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.