Abstract

This study investigates the magnetohydrodynamics of a micropolar fluid consisting of a hybrid nanofluid with mixed convection effects. By using the dimensionless set of variables, the resulting equations of ordinary differential equations are solved numerically using the bvp4c solver in MATLAB. In the present work, the water-based alumina–copper hybrid nanofluid is analytically modeled with modified thermophysical properties. The study reveals that the highest critical value of opposing flow is the hybrid nanofluid (ϕ1 = ϕ2 = 2%). By comparing the hybrid nanofluid with Cu–water nanofluid (ϕ1= 0%, ϕ2= 1%) as well as water (ϕ1= 0%, ϕ2= 0%), hybrid nanoparticle volume fraction enhances the dynamic viscosity performance and surface shear stress. In addition, the augmentation of the nanoparticle volume fraction and magnetic field parameter will increase the physical quantities Rex1/2 Cf, Rex Mx, and Rex−1/2 Nux. The result from the stability inquiry discloses that the first solution is more physically stable and trustworthy. It is proven that magnetohydrodynamics could contribute to controlling the fluid flow in a system, i.e., engineering operations and the medical field. In addition, this theoretical research can be a benchmark for experimental research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call