Abstract

The flow of a viscous, incompressiable and electrically conducting nanofluid flow over a stretching sheet under the influence of a transverse magnetic field is investigated taking in to account the effect of non-linear thermal radiation, newtonian heating and partial velocity slip. The nanofluid model considered in the paper incorporates the effect of Brownian motion and thermophoresis. The governing equations, in similarity form, are solved using Matlab's in-built boundary value problem solver “bvp4c”. The nanofluid flow model discussed in the present paper has significant applications in fluid engineering devices where the boundary surface is subjected to convecting heating and the temperature difference between the ambient fluid and the surface is large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.