Abstract
Fusing multi-modal radiology and pathology data with complementary information can improve the accuracy of tumor typing. However, collecting pathology data is difficult since it is high-cost and sometimes only obtainable after the surgery, which limits the application of multi-modal methods in diagnosis. To address this problem, we propose comprehensively learning multi-modal radiology-pathology data in training, and only using uni-modal radiology data in testing. Concretely, a Memory-aware Hetero-modal Distillation Network (MHD-Net) is proposed, which can distill well-learned multi-modal knowledge with the assistance of memory from the teacher to the student. In the teacher, to tackle the challenge in hetero-modal feature fusion, we propose a novel spatial-differentiated hetero-modal fusion module (SHFM) that models spatial-specific tumor information correlations across modalities. As only radiology data is accessible to the student, we store pathology features in the proposed contrast-boosted typing memory module (CTMM) that achieves type-wise memory updating and stage-wise contrastive memory boosting to ensure the effectiveness and generalization of memory items. In the student, to improve the cross-modal distillation, we propose a multi-stage memory-aware distillation (MMD) scheme that reads memory-aware pathology features from CTMM to remedy missing modal-specific information. Furthermore, we construct a Radiology-Pathology Thymic Epithelial Tumor (RPTET) dataset containing paired CT and WSI images with annotations. Experiments on the RPTET and CPTAC-LUAD datasets demonstrate that MHD-Net significantly improves tumor typing and outperforms existing multi-modal methods on missing modality situations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.