Abstract

This study investigates the mass transfer flow of Powell-Eyring fluid due to the porous stretching sheet with magnetic field. A second-order approximation of the Eyring-Powell fluid model is used to obtain the flow equations. Using usual similarity transformations, the governing equations have been transformed into non-linear ordinary differential equations and solved by a powerful technique known as shooting method along with R-K fourth order scheme. Graphical results displaying the influence of pertinent physical parameters on the velocity, concentration profile, skin-friction coefficient and Sherwood number are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.