Abstract
The present study analyses the magnetohydrodynamic (MHD) flow of a double stratified micropolar fluid across a vertical stretching/shrinking sheet in the presence of suction, chemical reaction, and heat source effects. The governing equations in the form of partial differential equations are transitioned into coupled nonlinear ordinary differential equations by means of similarity transformation. The numerical solutions are obtained with the aid of the boundary value problem bvp4c solver in the MATLAB software. Numerical results have been confirmed with the previous results for a certain case and the comparison is found to be in an excellent agreement. Results for related profiles and heat transfer characteristics are displayed through plots and tabulated for the governing parameters involved. It is found that the reduced skin friction coefficient and the local Nusselt number increase with the increasing chemical reaction and heat source parameters. The rising values of the chemical reaction parameter have increased the magnitude of the local Sherwood number. In contrary, the heat source parameter has the tendency to decrease the magnitude of the local Sherwood number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Research in Applied Sciences and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.