Abstract

Current work portrays the flow of Marangoni convection Magneto hydrodynamics Casson fluid with carbon nanotubes under the effect of transpiration and radiation. The carbon nanotube particles namely water-single wall carbon nanotubes are inserted in the fluid to enhance better thermal efficiency. This type of flow problems is applicable for real life situations such as drying of silicon wafers, glues, crystal growth and heat exchangers and so on. The ordinary differential equations (ODEs) form of the result is yield to convert partial differential equations of the given equation by using similarity variables. Then this resulting ODEs are solved analytically, firstly using momentum equation to get solution domain and then by using this domain the energy equation solved to get the temperature profile in terms of Laguerre polynomial. Additionally, mass transpiration is also solved to get the concentration profile in terms of Laguerre polynomial. By using the different controlling parameters, the results can be discussed. And the effect of this parameters are discussed by using graphical arrangements. The newness of the present work is to explain the physically flow problem on the basis of chemically radiative thermosolutal Marangoni convective fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.