Abstract
Thermosolutal Marangoni boundary layer flows are of great interest due to their applications in industrial applications such as drying of silicon wafers, thin layers of paint, glues, in heat exchangers, and crystal growth in space. The present analysis deals with the effect of chemical radiation and heat absorption/generation of the viscous fluid flow on a thermosolutal Marangoni porous boundary with mass transpiration and heat source/sink. The physical flow problem is mathematically modeled into Navier–Stokes equations. These nonlinear partial differential equations are then mapped into a set of nonlinear ordinary differential equations using similarity transformation. The analytical solutions for velocity, temperature, and concentration profiles are rigorously derived. The solutions so obtained are analyzed through various plots to demonstrate the effect of various physical parameters such as mass transpiration parameter Vc, inverse Darcy number Da−1, Marangoni number Ma, Schmidt number Sc, chemical reaction coefficient (K), Prandtl number (Pr), thermal radiation parameter (NR), and the heat source/sink parameter (I) on the momentum/thermal boundary, and their physical insights are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.