Abstract

HLA-DR2+ patients with multiple sclerosis (MS) that respond to vaccination with TCR V beta 5.2-38-58 peptides have increased frequencies of TCR peptide-specific T cells, reduced frequencies of myelin basic protein (MBP)-specific T cells, and a better clinical course than non-responders. To evaluate possible network regulation of MBP responses by TCR peptide-specific T cells, we compared properties of both cell types. Both MBP- and TCR peptide-specific T cell clones were CD4+ and predominantly HLA-DR restricted. HLA-DR2, which is in linkage disequilibrium in MS patients, preferentially restricted TCR peptide-specific clones as well as MBP-specific responses in HLA-DR2 and DR2,3+ donors. Within the DR2 haplotype, however, both DR beta 1*1501 and DR beta 5*0101 alleles could restrict T cell responses to V beta CDR2 peptides, whereas responses to MBP were restricted only by DR beta 5*0101. TCR peptide-specific clones expressed message for Th2 cytokines, including IL-4, IL-5, IL-6, IL-10, and TGF-beta, whereas MBP-specific T cell clones expressed the Th1 cytokines IFN-gamma and IL-2. Consistent with the Th2-like cytokine profile, TCR peptide-specific T cell clones expressed higher levels of CD30 than MBP-specific T cells. Culture supernatants from TCR peptide-specific T cell clones, but not from MBP- or Herpes simplex virus-specific T cells, inhibited both proliferation responses and cytokine message production of MBP-specific T cells. These results demonstrate distinct properties of MBP and TCR peptide-specific T cells, and indicate that both target and bystander Th1 cells can be inhibited by Th2 cytokines secreted by activated TCR peptide-specific T cells. These data support the rationale for TCR peptide vaccination to regulate pathogenic responses mediated by oligoclonal T cells in human autoimmune diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.