Abstract

Major histocompatibility complex (MHC) variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygous advantage or frequency-dependent selection. However, empirical support for these hypotheses under natural conditions is rare. In this study, we investigated the genetic constitution of the functionally important MHC class II gene (DRB exon 2) and the parasite load in a population of the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Fifty-eight individuals were genetically examined and the endoparasite load was quantified by counting fecal helminth eggs by using a modified McMaster technique. Thirty-four animals (58.6%) were infected. We identified 20 different MHC alleles with high levels of sequence divergence between alleles. Particularly, the antigen-binding sites revealed a significant higher rate of nonsynonymous substitutions (d(N)) than synonymous substitutions (d(S)), giving strong evidence of balancing selection. Heterozygosity did influence the infection status (being infected or not) and the individual fecal egg count (FEC) value with significantly higher values observed in homozygous individuals. Furthermore, a positive relationship was found between specific alleles and parasite load. The allele Rhpu-DRB*1 significantly occurred more frequently in infected individuals and in individuals with high FEC values (high parasite load). Individuals with the allele Rhpu-DRB*1 had a 1.5-fold higher chance of being infected than individuals without this allele (odds ratio test, P < 0.05). Contrarily, the allele Rhpu-DRB*8 significantly occurred more frequent in individuals with low FEC values. Our results support the hypotheses that MHC polymorphism in R. pumilio is maintained through pathogen-driven selection acting by both heterozygosity advantage and frequency-dependent selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call