Abstract

Measuring the fitnesses of genetic variants is a fundamental objective in evolutionary biology. A standard approach for measuring microbial fitnesses in bulk involves labeling a library of genetic variants with unique sequence barcodes, competing the labeled strains in batch culture, and using deep sequencing to track changes in the barcode abundances over time. However, idiosyncratic properties of barcodes can induce nonuniform amplification or uneven sequencing coverage that causes some barcodes to be over- or under-represented in samples. This systematic bias can result in erroneous read count trajectories and misestimates of fitness. Here, we develop a computational method, named REBAR (Removing the Effects of Bias through Analysis of Residuals), for inferring the effects of barcode processing bias by leveraging the structure of systematic deviations in the data. We illustrate this approach by applying it to two independent data sets, and demonstrate that this method estimates and corrects for bias more accurately than standard proxies, such as GC-based corrections. REBAR mitigates bias and improves fitness estimates in high-throughput assays without introducing additional complexity to the experimental protocols, with potential applications in a range of experimental evolution and mutation screening contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.