Abstract
High-quality magnetic resonance imaging (MRI) affords clear body tissue structure for reliable diagnosing. However, there is a principal problem of the trade-off between acquisition speed and image quality. Image reconstruction and super-resolution are crucial techniques to solve these problems. In the main field of MR image restoration, most researchers mainly focus on only one of these aspects, namely reconstruction or super-resolution. In this paper, we propose an efficient model called Multi-Stage Hybrid Attention Network (MHAN) that performs the multi-task of recovering high-resolution (HR) MR images from low-resolution (LR) under-sampled measurements. Our model is highlighted by three major modules: (i) an Amplified Spatial Attention Block (ASAB) capable of enhancing the differences in spatial information, (ii) a Self-Attention Block with a Data-Consistency Layer (DC-SAB), which can improve the accuracy of the extracted feature information, (iii) an Adaptive Local Residual Attention Block (ALRAB) that focuses on both spatial and channel information. MHAN employs an encoder–decoder architecture to deeply extract contextual information and a pipeline to provide spatial accuracy. Compared with the recent multi-task model T2Net, our MHAN improves by 2.759 dB in PSNR and 0.026 in SSIM with scaling factor ×2 and acceleration factor 4× on T2 modality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have