Abstract
We use deep-level transient spectroscopy (DLTS) to investigate the electronic properties of ZnO∕CdS∕CuxIn1−yGaySe2∕Mo∕soda-lime glass thin-film solar cells. We deposited films with different x and y values using elemental evaporation. Devices made from these films exhibit more than 40 hole and electron traps, with activation energies ranging from 0.07to1.17eV. Standard DLTS analysis (which assumes that entropy changes can be neglected) gives apparent capture cross sections that vary by 18 orders of magnitude over this energy range. All our data show that the charge-carrier emission rate obeys the Meyer-Neldel rule (MNR) with an isokinetic temperature of 340±30K. By including the MNR relation in detailed balance, we show that there is a single cross section for all the traps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.