Abstract

Semantic segmentation is a fundamental task in remote sensing image analysis that aims to classify each pixel in an image into different land use and land cover (LULC) segmentation tasks. In this paper, we propose MeViT (Medium-Resolution Vision Transformer) on Landsat satellite imagery for the main economic crops in Thailand as follows: (i) para rubber, (ii) corn, and (iii) pineapple. Therefore, our proposed MeViT enhances vision transformers (ViTs), one of the modern deep learning on computer vision tasks, to learn semantically rich and spatially precise multi-scale representations by integrating medium-resolution multi-branch architectures with ViTs. We revised mixed-scale convolutional feedforward networks (MixCFN) by incorporating multiple depth-wise convolution paths to extract multi-scale local information to balance the model’s performance and efficiency. To evaluate the effectiveness of our proposed method, we conduct extensive experiments on the publicly available dataset of Thailand scenes and compare the results with several state-of-the-art deep learning methods. The experimental results demonstrate that our proposed MeViT outperforms existing methods and performs better in the semantic segmentation of Thailand scenes. The evaluation metrics used are precision, recall, F1 score, and mean intersection over union (IoU). Among the models compared, MeViT, our proposed model, achieves the best performance in all evaluation metrics. MeViT achieves a precision of 92.22%, a recall of 94.69%, an F1 score of 93.44%, and a mean IoU of 83.63%. These results demonstrate the effectiveness of our proposed approach in accurately segmenting Thai Landsat-8 data. The achieved F1 score overall, using our proposed MeViT, is 93.44%, which is a major significance of this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.