Abstract
Estimation is an important class of problems that engineering undergraduates must be able to solve. However teaching-learning of estimation is under emphasized in the current engineering curriculum. In this paper, we report on the first cycle of a design-based research project to design a technology-enhanced learning environment (TELE) to help students learn estimation. The TELE includes features such as a progressive higher-order modelling-based structuring of the estimation process, a problem system simulator and metacognitive scaffolds. We performed a lab study and found that learners were able to use the features in the TELE to solve the estimation problem and obtain an order-of-magnitude estimate. Further, learners learned some of the reasoning processes involved in performing estimation and recognized the role of evaluation and the need for practical considerations in estimation. We identified the roles of various features in the TELE for learning these estimation reasoning processes. These results have implications for the redesign of our TELE to improve student learning of estimation.
Highlights
Engineers routinely make estimates of physical quantities such as power before they begin designing or making (Dym et al 2005)
Pedagogical foundation of the technology-enhanced learning environment (TELE) Model-based learning From the expert study, we identified the systematic model-based estimation process that we want students to learn in our TELE
We argue that the structure of the Estimap, with five task options only, all of which needed to be done in some order, along with their focus questions, provided the complementary mechanisms of structuring and problematizing, which helped students recognize the sequence that would be useful in solving the problem and made the progressively higher-order modelling-based estimation process intuitive and easy to follow
Summary
Engineers routinely make estimates of physical quantities such as power before they begin designing or making (Dym et al 2005). Consider this problem: “You are participating in an electric car race in which you are required to design an electric car of weight 7 kg with wheel diameters of 4 in. Estimate the electrical power needed to achieve this performance and the specifications of the motor you will need”. Engineers often make such estimates and judgements regarding physical quantities, in order to establish the feasibility of a design or narrow down the set of design choices (Dunn-rankin 2001; Shakerin 2006).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Research and Practice in Technology Enhanced Learning
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.