Abstract

In traditional quantum metrology protocols, the initial multipartite entangled pure quantum probes are considered to be isolated, i.e., free of quantum many-body effects. Here, we study the impact of inherent many-body effects such as interaction with noisy environment and nonlocal interactions among particles on metrologically resourceful multipartite entanglement of initially mixed quantum probes. In this regard, we employ an information-theoretic multipartite entanglement measure as a figure-of-merit. The inevitable interaction with the noisy environment leads to disentanglement in multipartite quantum probes which restricts its metrological advantage. For this, we use entanglement dissociation to derive bounds on the multipartite entanglement measure that can identify the relevant entanglement structure under global as well as local noisy evolution. Furthermore, we investigate nonlocal interactions in terms of their entangling capability in a multipartite quantum probe. We show that such nonlocal interactions can be exploited as a valuable resource that exhibits better precision scaling in mixed-state quantum metrology. Moreover, we numerically observe these results for GHZ-W class states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.