Abstract

The need for environmental friendly energy conversion systems has been increasing over the last decade, also in relation to the world’s growth in energy demand. High Temperature Solid Oxide Fuel Cells (HT-SOFCs) represent a very promising technology since they can be directly fed with traditional fuels, other than hydrogen, and offer the possibility of cogeneration. Furthermore, the low dependence of their efficiency on the system size makes them suitable for distributed micro-scale energy conversion. However, SOFCs are still today in a development stage, and a great research effort is still required before commercialization becomes a reality. From this point of view, on-site experiments are crucial in order to deeply understand HT-SOFCs based cogeneration modules’ performance and applicability to residential energy sector. Even though some work is appearing in the recent literature, very often experimental data are not accompanied by measurement uncertainties analysis, which is an important aspect of any experimental campaign. In the present paper, on the basis of the on-board instruments metrological characteristics declared by the manufacturer, the a-priori uncertainty analysis of a cogenerative module based on HT-SOFCs is presented. Therefore, for each performance parameter, the value of the related uncertainty has been calculated. In the authors’ opinion, these quantities are very important for a proper evaluation of the performance of HT-SOFCs based cogeneration units and also for the essential validation of results obtained from fuel cells modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.