Abstract

Hashing methods have been recently found very effective in retrieval of remote sensing (RS) images due to their computational efficiency and fast search speed. The traditional hashing methods in RS usually exploit hand-crafted features to learn hash functions to obtain binary codes, which can be insufficient to optimally represent the information content of RS images. To overcome this problem, in this paper we introduce a metric-learning based hashing network, which learns: 1) a semantic-based metric space for effective feature representation; and 2) compact binary hash codes for fast archive search. Our network considers an interplay of multiple loss functions that allows to jointly learn a metric based semantic space facilitating similar images to be clustered together in that target space and at the same time producing compact final activations that lose negligible information when binarized. Experiments carried out on two benchmark RS archives point out that the proposed network significantly improves the retrieval performance under the same retrieval time when compared to the state-of-the-art hashing methods in RS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.