Abstract
Many parametrization and mapping-related problems in geometry processing can be viewed as metric optimization problems, i.e., computing a metric minimizing a functional and satisfying a set of constraints, such as flatness. Penner coordinates are global coordinates on the space of metrics on meshes with a fixed vertex set and topology, but varying connectivity, making it homeomorphic to the Euclidean space of dimension equal to the number of edges in the mesh, without any additional constraints imposed. These coordinates play an important role in the theory of discrete conformal maps, enabling recent development of highly robust algorithms with convergence and solution existence guarantees for computing such maps. We demonstrate how Penner coordinates can be used to solve a general class of optimization problems involving metrics, including optimization and interpolation, while retaining the key solution existence guarantees available for discrete conformal maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.