Abstract

The present paper contains a systematic study of the structure of metric Lie algebras, i.e., finite-dimensional real Lie algebras equipped with a nondegenerate invariant symmetric bilinear form. We show that any metric Lie algebra g without simple ideals has the structure of a so called balanced quadratic extension of an auxiliary Lie algebra l by an orthogonal l-module a in a canonical way. Identifying equivalence classes of quadratic extensions of l by a with a certain cohomology set H2 Q(l,a), we obtain a classification scheme for general metric Lie algebras and a complete classification of metric Lie algebras of index 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.