Abstract

In this paper, we consider some properties of hyperbolic polyhedra, both common with Euclidean and specific. Asymptotic behavior of metric characteristics of polyhedra in the n-dimensional hyperbolic space is examined in the cases where parameters of the polyhedra change and the dimension of the space unboundedly increases; in particular, the radius of the inscribed sphere of a polyhedron is estimated and its asymptotic behavior is obtained. In connection with this, the problem of estimating the minimal number of faces of the described polyhedron in the n-dimensional hyperbolic space depending on the radius of the inscribed sphere is posed. We also consider some properties of hyperbolic polygons that belong to both absolute geometry or only to hyperbolic geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.