Abstract
We present a Gauss–Bonnet type formula for complete surfaces in n-dimensional hyperbolic space $$\mathbb{H}^{n}$$ under some assumptions on their asymptotic behaviour. As in recent results for Euclidean submanifolds (see Dillen–Kühnel [4] and Dutertre [5]), the formula involves an ideal defect, i.e., a term involving the geometry of the set of points at infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.