Abstract
Industrial textile wastewater contains large amounts of cationic dye material. Therefore, a new adsorbent was synthesized as modified poly(glycidyl methacrylate) (mPGMA) with a fluorine group-containing compound 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). mPGMA was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR). The proposed adsorbent has been used to remove methylene blue (MB) from aqueous solutions by the adsorption process. In further experiments, the removal efficiency of adsorbent in both powder (˂600 μm) and granular form was compared from aqueous solutions by adsorption process. Furthermore, the effects of changing parameters such as adsorbent dosage, contact time, pH, temperature, and initial dye concentration on methylene blue adsorption were investigated. Also, Langmuir, Freundlich, and Temkin isotherms have been used to describe the equilibrium characteristics of adsorption. Finally, the experimental data fitted well by Langmuir isotherm with a maximum adsorption capacity of 17.5 mg g-1. The experimental data were applied to pseudo-first- and second-order models. The experimental results were better fitted for the pseudo-second-order model than the other model. Consequently, the experimental results showed that mPGMA is a suitable low-cost adsorbent with great potential benefit in removing methylene blue from aqueous solutions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have