Abstract

Schwann cells (SCs) are constituents of the peripheral nervous system. The differentiation of SCs in injured peripheral nerves is critical for regeneration after injury. Methylcobalamin (MeCbl) is a vitamin B12 analog that is necessary for the maintenance of the peripheral nervous system. In this study, we estimated the effect of MeCbl on SCs. We showed that MeCbl downregulated the activity of Erk1/2 and promoted the expression of the myelin basic protein in SCs. In a dorsal root ganglion neuron–SC coculture system, myelination was promoted by MeCbl. In a focal demyelination rat model, MeCbl promoted remyelination and motor and sensory functional regeneration. MeCbl promoted the in vitro differentiation of SCs and in vivo myelination in a rat demyelination model and may be a novel therapy for several types of nervous disorders.

Highlights

  • Schwann cells are glial cells to form myelin in the peripheral nervous system

  • MeCbl is an active form of vitamin B12 that is essential to the biochemical metabolism and prerequisite for motor and Abbreviations: Acly, ATP citrate lyase; db-cAMP, dibutyryl adenosine 3’,5’-cyclic monophosphate; DRG, dorsal root ganglion; LPC, lysophosphatidylcholine; MAG, myelin associated glycoprotein; MBP, myelin basic protein; MeCbl, methylcobalamin; NF200, neurofilament 200; P0, myelin protein zero; SCs, Schwann cells; TNF-α, tumor necrosis factor-α

  • MeCbl does not Stimulate the Proliferation of SCs After peripheral nerve injury, SCs located in the distal nerve begin to dedifferentiate and proliferate; this reaction is a prerequisite process for the regeneration of damaged peripheral nerves

Read more

Summary

Introduction

Schwann cells are glial cells to form myelin in the peripheral nervous system. Peripheral nerve injury may cause an axonal damage that may lead to Wallerian degeneration around the lesion site. It triggers a cascade including glial cell responses such as marked SC proliferation. MeCbl is an active form of vitamin B12 that is essential to the biochemical metabolism and prerequisite for motor and Abbreviations: Acly, ATP citrate lyase; db-cAMP, dibutyryl adenosine 3’,5’-cyclic monophosphate; DRG, dorsal root ganglion; LPC, lysophosphatidylcholine; MAG, myelin associated glycoprotein; MBP, myelin basic protein; MeCbl, methylcobalamin; NF200, neurofilament 200; P0, myelin protein zero; SCs, Schwann cells; TNF-α, tumor necrosis factor-α

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.