Abstract
Alzheimer’s disease (AD) is the most common form of dementia. However, the molecular basis of the development and progression of AD is still unclear. To elucidate the molecular processes related to AD, we obtained the expression profiles and analyzed the differentially expressed genes (DEGs). The genes potentially involved in the AD process were identified by PPI network and STEM analysis. The molecular mechanisms related to the recognition of AD were determined by GSEA and enrichment analysis. The differences from immune cells in AD were calculated. The methylation factors were identified by methylation difference analysis. Among them, MRPL15 was identified as suitable for diagnosing AD. Its expression trend had been verified in GSE5281. Importantly, MRPL15 was also a methylation factor. In addition, macrophages and neutrophils were up-regulated in AD patients. This was consistent with previous immune inflammation responses identified as being involved in the development of AD. The results of the present study revealed the genetic changes and molecular mechanisms involved in the process of the development and deterioration of AD patients. The potential AD risk genes and potential biological targets were identified. It provided evidence that immune inflammation and immune cells play an important role in AD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.