Abstract

Methyl protodioscin (MPD), a furostanol saponin derived from the rhizomes of Dioscorea collettii var. hypoglauca (Dioscoreaceae), has been shown to exhibit broad bioactivities such as anti-inflammation and antitumor activities. Here, we explored the molecular mechanisms by which MPD induced apoptosis in MG-63 cells. The data showed that MPD significantly suppressed cell growth (cell viabilities: 22.5 ± 1.9% for 8 μM MPD versus 100 ± 1.4% for control, P < 0.01) and enhanced cell apoptosis. The exposure to MPD resulted in a significant induction of reactive oxygen species, loss of mitochondrial membrane potential, and activation of caspase-9 and caspase-3 (P < 0.01, all cases). Furthermore, treatment with MPD increased the levels of phosphorylated JNK and p38 MAPK and markedly decreased the levels of phosphorylated ERK in MG-63 cells. Co-administration of the JNK-specific antagonist, the p38-specific antagonist, or the caspase antagonist (P < 0.05, all cases) has reversed the apoptotic effects in MPD treatment. We also found that exposure to MPD resulted in a significant reduction in the protein level of anti-apoptotic proteins Bcl-2, survivin, and XIAP (P < 0.05, all cases). In conclusion, our results indicate that MPD induces apoptosis of human osteosarcoma MG-63 cells, at least in part, by caspase-dependent and MAPK signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call