Abstract

The undifferentiated cambial meristematic cell (CMC) has been recognized as a value-added production platform for plant natural products in comparison to the dedifferentiated plant cell line (DDC). In a time-based approach at 0, 24, 48, and 72 h, the present study aimed at investigating the phytochemical metabolome of methyl jasmonate (MeJA)-elicited CMC cultures derived from sweet basil (Ocimum basilicum L.), including primary and secondary metabolites analyzed using GC/TOF-MS post-silylation and RP-UPLC-C18-FT-MS/MS, respectively, as well as the analysis of aroma composition using headspace SPME-GC-MS. The results revealed a stress response in primary metabolism manifested by an increase in amino and organic acids reaching their maximum levels after 48 (1.3-fold) and 72 (1.7-fold) h, respectively. In addition, phenolic acids (e.g., sagerinic acid, rosmarinic acid, and 3-O-methylrosmarinic acid) followed by flavonoid aglycones (e.g., salvigenin and 5,6,4′-trihydroxy-7,3′-dimethoxyflavone) were the most abundant with prominent increases at 48 (1.2-fold) and 72 (2.1-fold) h, respectively. The aroma was intensified by the elicitation along the time, especially after 48 and 72 h. Furthermore, multivariate data analyses, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) confirmed elicitation effect, especially post 48 and 72 h. The study further assessed the effect of MeJA elicitation on the antioxidant and polyphenolic content. The cultures at 48 h demonstrated a significant (p < 0.05) antioxidant activity concurrently with correlation with total polyphenolic content using Pearson's correlation. Our study provides new insights to the elicitation impact on primary and secondary metabolism, in addition to aroma profile, to orchestrate the stress response and in relation to antioxidant effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.