Abstract
Anesthetic agents influence central regulations. This study investigated the effects of methohexital anesthesia on renal and hormonal responses to acute sodium and water loading in dogs in the absence of surgical stress. Fourteen experiments (two in each dog) were performed in seven well-trained, chronically tracheotomized beagle dogs kept in highly standardized environmental and dietary conditions (2.5 mmol sodium and 91 ml water/kg body weight daily). Experiments lasted 3 h, while the dogs were conscious (7 experiments) or, after 1 h control, while they were anesthetized (7 experiments) with methohexital (initial dose 6.6 mg/kg body weight and maintenance infusion 0.34 mg.min-1.kg-1 body weight) over a period of 2 h. In both experiments, extracellular volume expansion was performed by intravenous infusion of a balanced isoosmolar electrolyte solution (0.5 ml.min-1.kg-1 body weight). Normal arterial blood gases were maintained by controlled mechanical ventilation. In another five dogs the same protocol was used, and vasopressin (0.05 mU.min-1.kg-1 body weight) was infused intravenously during methohexital anesthesia. Values are given as means. During methohexital anesthesia, mean arterial pressure decreased from 108 to 101 mmHg, and heart rate increased from 95 to 146 beats/min. Renal sodium excretion decreased; urine volume increased; and urine osmolarity decreased from 233 to 155 mosm/l, whereas plasma osmolarity increased from 301 to 312 mosm/l because of an increase in plasma sodium concentration from 148 to 154 mmol/l. Plasma renin activity, plasma aldosterone concentration, plasma atrial natriuretic peptide, and plasma antidiuretic hormone concentrations (range 1.8-2.8 pg/ml) did not change in either protocol. In the presence of exogenous vasopressin (antidiuretic hormone 3.3 pg/ml), water diuresis did not occur, and neither plasma osmolarity nor the plasma concentration of sodium changed. Methohexital may impair osmoregulation by inhibiting adequate pituitary antidiuretic hormone release in response to an osmotic challenge.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have