Abstract
A technique has been developed for reducing the material intensity of highly stressed tail sections of launch vehicles, taking into account strength and stability constraints as well as technological requirements. A cylindrical longitudinally and transversely ribbed waffle-grid (lattice) shell with rectangular holes is taken as the design scheme of the tail section, with its lower end being fastened at locations of support brackets, and the upper one being loaded with longitudinal compressive forces, evenly distributed along the contour, due to the action of the weight of higher-located structure elements. The optimization algorithm is based on the principle of ensuring discrete uniform strength of individual elements (substructures). The structural geometric dimensions of cross-sections of a standard tail section and the stiffness parameters of longitudinal and transverse load-bearing frames, the wall thicknesses of shell elements, the dimensions of lattice shells, etc., are selected from the requirements of stress-strength reliability: constraints on the limiting values of equivalent stresses (strength conditions), compressive stresses of the local and general buckling, and a number of design and technological requirements. The direct calculation of the tail section and the search for its variable geometric parameters are proposed to be performed using an interactive numerical-analytical (finite element method – engineering analysis) algorithm. The initial calculation of the static stress-strain state of the lattice-reinforced tail section was carried out by the finite element method, which is implemented in the NASTRAN package. To discretize the shell and its ribbing, flat finite elements were used. In the process of the finite-element numerical modeling of the tail section state, the reliability of the obtained results of calculating the equivalent stresses was analyzed by studying the convergence of the results of calculations on a series of meshes with different refinement. Results of the application of the developed technique to reduce the mass of the standard tail section of the Antares launch vehicle are presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have