Abstract

One common component of otolaryngological surgeries is the reshaping of cartilage. Previous studies have demonstrated the efficient achievement of this procedure through electromechanical reshaping (EMR), a technique that involves the direct application of voltage to cartilage that is mechanically deformed in a jig. Two main parameters, voltage and application time, may be regulated to achieve varying degrees of shape change. Although prior research has correlated these EMR parameters with degree of shape change, it remains necessary to correlate the same parameters with the degree of change in the mechanical properties of tissue. Once this is accomplished, an ideal balance may be determined, in which shape change is maximized while intrinsic tissue damage is minimized This study satisfies this need by providing comprehensive data on the pre- and post-EMR stiffness of both septal and auricular cartilage over a range of voltages (2-8V) with constant application time (2 min for septal, 3 min for auricular). EMR was applied using flat platinum electrodes to one of two 15 mm X 5 mm samples obtained from the same cartilage specimen, while the second sample was maintained as a control. Following a 15 min re-hydration period, the Young's modulus of the tissue was calculated for both the control and experimental sample from data obtained through a uniaxial tension test. A general reduction in stiffness was observed beginning at 3V, with the magnitude of reduction increasing at 6V.

Highlights

  • One component of several otolaryngological surgeries is the reshaping of cartilage

  • Several previous studies have demonstrated the efficient achievement of this procedure through electromechanical reshaping (EMR), a technique that involves the direct application of voltage to cartilage mechanically deformed in a jig

  • Voltage and application time, may be varied to achieve varying degrees of shape change. Both maximized shape change and minimized intrinsic tissue damage determine the ideal parameters for EMR

Read more

Summary

Introduction

One component of several otolaryngological surgeries is the reshaping of cartilage. Several previous studies have demonstrated the efficient achievement of this procedure through electromechanical reshaping (EMR), a technique that involves the direct application of voltage to cartilage mechanically deformed in a jig. Methods for evaluating changes in cartilage stiffness following electromechanical reshaping From 2nd Scientific Meeting of the Head and Neck Optical Diagnostics Society San Francisco, CA, USA.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.