Abstract
Hot forging is a complex process involving the mutual influence of numerous thermo-mechanical-metallurgical material phenomena. In particular, the strains of transformation-induced plasticity (TRIP) have a significant influence on the distortions and residual stresses of the components. The TRIP strains refer to the anisotropic strains depending on the orientation and significance of the stress conditions during cooling superimposed to the phase transformation. With the use of numerical models, the impact of this effect can be investigated in order to ensure the production of high quality components. However, an experimental determination of the characteristic values of TRIP is challenging, which is why only few corresponding data are available in the literature. Therefore, this paper presents an experimental and numerical methodology as well as the results of studies on the interaction between stresses and phase transformations in the materials AISI 4140 and AISI 52100. The investigations of the TRIP strains are carried out using hollow specimens, which are thermo-mechanically treated in the physical forming simulator Gleeble 3800-GTC. The specimens are austenitised, quenched to test temperature and held there while diffusion controlled phase transformation takes place. The extent of TRIP as a result of different superimposed tensile or compressive loads is determined by means of dilatometry. In addition, the extent of TRIP for diffusionless martensitic phase transformations was investigated by continuous cooling tests under tensile and compressive loads. It was found that the transformation plasticity varies depending on the material, the phase type, the temperature and the tensile or compressive stresses. Subsequently, simulations of the physical experiments using the FE software Simufact.Forming verified the determined phase specific values of TRIP.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have