Abstract

Digital technologies are being actively introduced into Russian agriculture at different levels of information analysis (from the plot to the field, farm, region and country as a whole). In crop production at the field level, one of the most important values is the introduction of systems for accurate, rapid and automated monitoring of crop condition, the success of which largely predetermines the effectiveness of precision farming systems. The aim of the research is to develop a methodology for using Internet of Things technologies for non-contact monitoring of crops and related meteorological and soil-hydrological parameters. A wireless network is used as the basis for monitoring, which includes sensor nodes equipped with sensors for meteorological parameters, soil moisture and cameras equipped with a fish-eye lens. Sensor nodes equipped with sensors and cameras are placed in the field according to a specially designed scheme, individualized for each field. Development of the scheme of sensor placement on the field is based on the analysis of long-term archives of satellite data of high spatial resolution and refined soil maps of large scale. Information from sensors is wirelessly transmitted to the network coordinator (or base station) and then to the remote server in the database, and there it is automatically analyzed and interpolated for the whole field. Based on the analysis, recommendations for correction of agrotechnology of crop cultivation are formed. Elements of the methodology were tested on a number of test fields and showed high efficiency. Implementation of the proposed approaches can serve as an alternative to the use of remote sensing data for crop monitoring in offline precision farming systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call