Abstract

A novel methodology is described for porosimetry as well as for water transport through the pore system in dynamic DEM-based virtual cementitious materials. The pore network topology, the pore size distribution and the pore connectivity are assessed on the basis of a robotics-inspired pore delineation method and star volume measurements. Permeability estimates are based on a tube network model that incorporates these parameters and a shape factor. Since concrete contains in practical situations a variable amount of water, permeability estimation is presented as a function of the state of saturation. Satisfactory agreement is found with experimental data, validating the methodology. Earlier, the various "building blocks" were separately validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.