Abstract
Global warming/climate change is the greatest environmental threat of our time. Rapidly developing aquaculture sector is an anthropogenic activity, the contribution of which to global warming is little understood, and estimation of greenhouse gases (GHGs) emission from the aquaculture ponds is a key practice in predicting the impact of aquaculture on global warming. A comprehensive methodology was developed for sampling and simultaneous analysis of GHGs, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from the aquaculture ponds. The GHG fluxes were collected using cylindrical acrylic chamber, air pump, and tedlar bags. A cylindrical acrylic floating chamber was fabricated to collect the GHGs emanating from the surface of aquaculture ponds. The sampling methodology was standardized and in-house method validation was established by achieving linearity, accuracy, precision, and specificity. GHGs flux was found to be stable at 10±2°C of storage for 3days. The developed methodology was used to quantify GHGs in the Pacific white shrimp Penaeus vannamei and black tiger shrimp Penaeus monodon culture ponds for a period of 4months. The rate of emission of carbon dioxide was found to be much greater when compared to other two GHGs. Average GHGs emission in gha-1day-1 during the culture was comparatively high in P.vannamei culture ponds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.