Abstract

ABSTRACT Fabrication of steel materials using high heat processes, such as welding, for building structures may lead to unexpected complex distortion. Thus, the optimisation of the assembly sequence to obtain the lowest deformation for huge steel structures, such as ships and offshore structures, is crucial. The objective of this study is to introduce an efficient method to systemically determine the optimal welding sequence for the lowest deformation of a general ship side panel, which is widely employed to design vessels and offshore structures. In this study, numerical simulation with a finite element method based on the inherent strain, interface element and multipoint constraint function is used as a precise computational approach to analyse the welding deformation. The employed numerical simulation obviously validated proposed systemic method to efficiently decide the optimal welding sequence for minimising welding displacement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call