Abstract

AbstractThe Jovian Auroral Distributions Experiment Ion sensor (JADE‐I) on Juno is a plasma instrument that measures the energy‐per‐charge (E/Q) distribution of 0.01 to 46.2 keV/q ions over a mass‐per‐charge (M/Q) range of 1– 64 amu/q. However, distinguishing O+ and S2+ from JADE‐I's measurements is a challenging task due to similarities in their M/Q (∼16 amu/q). Because of this, O+ and S2+ have not been fully resolved in the in situ measurements made by plasma instruments at Jupiter (e.g., Voyager PLS and Galileo PLS) and their relative ratios has been studied using physical chemistry models and ultraviolet remote observations. To resolve this ambiguity, a ray tracing simulation combined with carbon foil effects is developed and used to obtain instrument response functions for H+, O+, O2+, O3+, Na+, S+, S2+, and S3+. The simulation results indicate that JADE‐I can resolve the M/Q ambiguity between O+ and S2+ due to a significant difference in their charge state modification process and a presence of a large electric potential difference (∼8 kV) between its carbon foils and MCPs. A forward model based on instrument response functions and convected kappa distributions is then used to obtain ion properties at the equatorial plasma sheet (∼36 RJ) in the predawn sector of magnetosphere. The number density ratio between O+ and S2+ for the selected plasma sheet crossings ranges from 0.2 to 0.7 (0.37 ± 0.12) and the number density ratio between total oxygen ions to total sulfur ions ranges from 0.2 to 0.6 (0.41 ± 0.09).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call