Abstract
A method of successive approximations, a generalization of the Il'yushin method of elastic solutions, is proposed for solving problems of the nonlinear theory of elasticity in which the stress-strain relation is given in the form of a time operator Frechet-differentiable in a neighborhood of zero. The nonlinear relaxation kernels are found from the given nonlinear creep kernels for the principal quadratic theory of elasticity. These relations make it possible to formulate the boundary value problem for this theory. By way of illustration the problem of the pressure exerted on a space by a sphere is examined within the framework of the developed theory. The question of the convergence of the method is discussed in relation to the quadratic theory of visco-elasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.