Abstract
In this paper, we present the development of a method to accurately measure the positive and negative charge distribution of nanosized aerosols using a tandem differential mobility analyzer (TDMA) system. From the series of TDMA measurements, the charge fraction of nanosized aerosol particles was obtained as a function of equivalent mobility particle diameter ranging from 50 to 200 nm. The capability of this new approach was implemented by sampling from a laminar diffusion flame which provides a source of highly charged particles due to naturally occurring flame ionization process. The results from the TDMA measurement provide the charge distribution of nanosized aerosols which we found to be in reasonable agreement with Boltzmann equilibrium charge distribution theory and a theory based upon charge population balance equation (PBE) combined with Fuchs theory (N.A. Fuchs, Geofis. Pura Appl. 56 (1963) 185). The theoretically estimated charge distribution of aerosol particles based on the PBE provides insight into the charging processes of nanosized aerosols surrounded by bipolar ions and electrons, and agree well with the TDMA results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.