Abstract
Although many three-dimensional pointing gesture recognition methods have been proposed, the problem of self-occlusion has not been considered. Furthermore, because almost all pointing gesture recognition methods use a wide-angle camera, additional sensors or cameras are required to concurrently perform finger gesture recognition. In this paper, we propose a method for performing both pointing gesture and finger gesture recognition for large display environments, using a single Kinect device and a skeleton tracking model. By considering self-occlusion, a compensation technique can be performed on the user's detected shoulder position when a hand occludes the shoulder. In addition, we propose a technique to facilitate finger counting gesture recognition, based on the depth image of the hand position. In this technique, the depth image is extracted from the end of the pointing vector. By using exception handling for self-occlusions, experimental results indicate that the pointing accuracy of a specific reference position was significantly improved. The average root mean square error was approximately 13 pixels for a 1920 × 1080 pixels screen resolution. Moreover, the finger counting gesture recognition accuracy was 98.3%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.