Abstract
The inactivated polio vaccine (IPV) contains viral samples that belong to serotypes 1, 2 and 3. We report here a surface plasmon resonance (SPR)-based technique that permits the simultaneous assay of the individual viral types in the IPV as well as in different bulk intermediates from the industrial vaccine production process. Monoclonal antibodies specific to each of the 3 viral types along with a negative control antibody are captured via an anti-IgG antibody on the surface of the 4 flow cells of the SPR instrument. The viral samples are then injected over these flow cells and the increase in resonance units as a result of virus binding is measured. The method was calibrated by an analysis of the European Working Standard (EWS) for poliovirus vaccines. We show that the antibodies used recognize viruses with functional affinities in the picomolar range permitting an effective capture of the antigen. In addition we demonstrate that the antibodies are highly specific to a given virus type and that the heat induced destruction of the D-antigen abolishes antibody recognition entirely. The technique was found to be reproducible and robust and its response was linear to the antigen concentration. Due to the rapidity of analysis this technique permits an almost real-time follow-up of the industrial production process and may present an alternative to the established ELISA assay for the analysis of the intermediates and the final product.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have