Abstract

Use of the microelectrode array (MEA) system to record spontaneous neuron activity from networks of cultured neurons has potential as a good risk evaluation method for drug-induced seizure events. Spontaneous electrical activity in neural networks consists of action potential spikes and organized patterns of action potential bursts. In both potentiated rodent primary neurons and human induced pluripotent stem cell (iPSC)-derived neurons, an epileptogenic response pattern manifests as a synchronized burst from spatially separated neurons. Here, we delineate how to perform MEA experiments using cultured neurons, and how to analyze the MEA data to detect drug-induced seizurogenic abnormalities. Usually, a drug's effects, as shown by MEA data, include changes in spike frequency, inter-spike intervals (ISI), burst frequency, burst duration, spikes in a burst, etc. Subsequently, seizurogenic events are evidenced by changes in synchronized burst phenotypes from spatially separated multiple channels in an MEA probe, such as a change in the cross correlation of the spike events from all channels in an MEA probe, or a change in histogram from the sum of ISI for all channels in a probe, etc. We attempted to depict an epileptogenic marker using a histogram of the sum of spikes for all channels in an MEA probe. Verification of these metrics for drug induced abnormalities is ongoing in various collaboration organizations, including the Consortium for Safety Assessment using Human iPS Cells (CSAHi), iPS Non-clinical Experiments for the Nervous System (iNCENS). Collaboration networks for the utilization of iPSC-derived cells during drug development are also summarized here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call