Abstract

Fluorescence microscopy is currently one of the more powerful and versatile techniques available for biological studies. With conventional biological immunofluorescence microscopy, caveolin-1 (CAV1) is visualized as numerous small dots, which are often distributed as a linear array or along the edge of the cell. Although its presence, as well as that of other proteins, can be detected by conventional immunofluorescence microscopy, those results do not clarify whether two different proteins exist in the plasma membrane of a specimen or how they are distributed two-dimensionally. Here, we describe an unroofing procedure that clearly reveals CAV1 localization in a single plane of the plasma membrane and also demonstrate a super-resolution structured illumination microscopy technique for observation of CAV1 in the plasma membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call